344 research outputs found

    Riparian vegetation restoration: Does social perception reflect ecological value?

    Get PDF
    Special Issue PaperSocial‐ecological contexts are key to the success of ecological restoration projects. The ecological quality of restoration efforts, however, may not be fully evident to stakeholders, particularly if the desired aesthetic experience is not delivered. Aesthetically pleasing landscapes are more highly appreciated and tend to be better protected than less appealing landscapes, regardless of their ecological value. Positive public perception of restoration actions may therefore facilitate stakeholder involvement and catalyse recognition of ecological improvement. Here we aim to contrast aesthetical perception and ecological condition in headwater river reaches restored through passive ecological restoration in study areas in Portugal (Alentejo) and France (Normandy). We recorded structural and functional indicators of riparian vegetation to monitor the ecological condition of study sites along a passive restoration trajectory. Aesthetical perception indicators were assessed through stakeholder inquiries developed under a semantic differential approach. We analysed perception responses to changes in the riparian ecosystems resulting from passive ecological restoration across different geographical contexts and social groups. The analysed social groups comprised stakeholders (environmental managers and landowners) and university students (landscape architecture and geography students). Results indicate that (a) visual preferences often do not reflect changes in ecological condition, (b) perception of the restoration process is strongly context dependent, and (c) experience and cultural background affect perception of ecological condition across the different social groups analysed. Clear identification of relevant stakeholder groups (those interested in or directly affected by restoration), effective communication, and stakeholder engagement are therefore essential for assuring the success of river restoration projectsinfo:eu-repo/semantics/publishedVersio

    CWRML: representing crop wild relative conservation and use data in XML

    Get PDF
    Background Crop wild relatives are wild species that are closely related to crops. They are valuable as potential gene donors for crop improvement and may help to ensure food security for the future. However, they are becoming increasingly threatened in the wild and are inadequately conserved, both in situ and ex situ. Information about the conservation status and utilisation potential of crop wild relatives is diverse and dispersed, and no single agreed standard exists for representing such information; yet, this information is vital to ensure these species are effectively conserved and utilised. The European Community-funded project, European Crop Wild Relative Diversity Assessment and Conservation Forum, determined the minimum information requirements for the conservation and utilisation of crop wild relatives and created the Crop Wild Relative Information System, incorporating an eXtensible Markup Language (XML) schema to aid data sharing and exchange. Results Crop Wild Relative Markup Language (CWRML) was developed to represent the data necessary for crop wild relative conservation and ensure that they can be effectively utilised for crop improvement. The schema partitions data into taxon-, site-, and population-specific elements, to allow for integration with other more general conservation biology schemata which may emerge as accepted standards in the future. These elements are composed of sub-elements, which are structured in order to facilitate the use of the schema in a variety of crop wild relative conservation and use contexts. Pre-existing standards for data representation in conservation biology were reviewed and incorporated into the schema as restrictions on element data contents, where appropriate. Conclusion CWRML provides a flexible data communication format for representing in situ and ex situ conservation status of individual taxa as well as their utilisation potential. The development of the schema highlights a number of instances where additional standards-development may be valuable, particularly with regard to the representation of population-specific data and utilisation potential. As crop wild relatives are intrinsically no different to other wild plant species there is potential for the inclusion of CWRML data elements in the emerging standards for representation of biodiversity data

    Translating land cover/land use classifications to habitat taxonomies for landscape monitoring: A Mediterranean assessment

    Get PDF
    Periodic monitoring of biodiversity changes at a landscape scale constitutes a key issue for conservation managers. Earth observation (EO) data offer a potential solution, through direct or indirect mapping of species or habitats. Most national and international programs rely on the use of land cover (LC) and/or land use (LU) classification systems. Yet, these are not as clearly relatable to biodiversity in comparison to habitat classifications, and provide less scope for monitoring. While a conversion from LC/LU classification to habitat classification can be of great utility, differences in definitions and criteria have so far limited the establishment of a unified approach for such translation between these two classification systems. Focusing on five Mediterranean NATURA 2000 sites, this paper considers the scope for three of the most commonly used global LC/LU taxonomies—CORINE Land Cover, the Food and Agricultural Organisation (FAO) land cover classification system (LCCS) and the International Geosphere-Biosphere Programme to be translated to habitat taxonomies. Through both quantitative and expert knowledge based qualitative analysis of selected taxonomies, FAO-LCCS turns out to be the best candidate to cope with the complexity of habitat description and provides a framework for EO and in situ data integration for habitat mapping, reducing uncertainties and class overlaps and bridging the gap between LC/LU and habitats domains for landscape monitoring—a major issue for conservation. This study also highlights the need to modify the FAO-LCCS hierarchical class description process to permit the addition of attributes based on class-specific expert knowledge to select multi-temporal (seasonal) EO data and improve classification. An application of LC/LU to habitat mapping is provided for a coastal Natura 2000 site with high classification accuracy as a result

    Evolutionary winners are ecological losers among oceanic island plants

    Get PDF
    Aim Adaptive radiation, in which successful lineages proliferate by exploiting untapped niche space, provides a popular but potentially misleading characterization of evolution on oceanic islands. Here we analyse the respective roles of members of in situ diversified vs. non-diversified lineages in shaping the main ecosystems of an archipelago to explore the relationship between evolutionary and ecological ‘success’. Location Canary Islands. Taxon Vascular plants. Methods We quantified the abundance/rarity of the native flora according to the geographical range (number of islands where present and geographical extent of the range), habitat breadth (climatic niche) and local abundance (cover) using species distribution data based on 500 × 500 m grid cells and 2000 vegetation inventories located all over the archipelago. Results Species of diversified lineages have significantly smaller geographic ranges, narrower climatic niches and lower local abundances than those of non-diversified lineages. Species rarity increased with the degree of diversification. The diversified Canarian flora is mainly comprised by shrubs. At both archipelagic and island level, the four core ecosystems (Euphorbia scrub, thermophilous woodlands, laurel forest and pine forest) were dominated by non-diversified lineages species, with diversified lineages species providing <25% cover. Species of diversified lineages, although constituting 54% of the archipelagic native flora, were only abundant in two rare ecosystems: high mountain scrub and rock communities. Main conclusions Radiated species, endemic products of in situ speciation, are mostly rare in all three rarity axes and typically do not play an important role in structuring plant communities on the Canaries. The vegetation of the major ecosystem types is dominated by plants representing non-diversified lineages (species that derive from immigration and accumulation), while species of evolutionarily successful lineages are abundant only in marginal habitats and could, therefore, be considered ecological losers. Within this particular oceanic archipelago, and we posit within at least some others, evolutionary success in plants is accomplished predominantly at the margins.publishedVersio

    Phenotypic Plasticity of Leaf Shape along a Temperature Gradient in Acer rubrum

    Get PDF
    Both phenotypic plasticity and genetic determination can be important for understanding how plants respond to environmental change. However, little is known about the plastic response of leaf teeth and leaf dissection to temperature. This gap is critical because these leaf traits are commonly used to reconstruct paleoclimate from fossils, and such studies tacitly assume that traits measured from fossils reflect the environment at the time of their deposition, even during periods of rapid climate change. We measured leaf size and shape in Acer rubrum derived from four seed sources with a broad temperature range and grown for two years in two gardens with contrasting climates (Rhode Island and Florida). Leaves in the Rhode Island garden have more teeth and are more highly dissected than leaves in Florida from the same seed source. Plasticity in these variables accounts for at least 6–19 % of the total variance, while genetic differences among ecotypes probably account for at most 69–87 %. This study highlights the role of phenotypic plasticity in leaf-climate relationships. We suggest that variables related to tooth count and leaf dissection in A. rubrum can respond quickly to climate change, which increases confidence in paleoclimate methods that use these variables
    • 

    corecore